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It is known that relative entropy of entanglement for an entangled state p is defined via its closest separable
(or positive partial transpose) state o. Recently, it has been shown how to find p provided that o is given in a
two-qubit system. In this article we study the reverse process, that is, how to find o provided that p is given. It is
shown that if p is of a Bell-diagonal, generalized Vedral-Plenio, or generalized Horodecki state, one can find o
from a geometrical point of view. This is possible due to the following two facts: (i) the Bloch vectors of p and
o are identical to each other; (ii) the correlation vector of o can be computed from a crossing point between a
minimal geometrical object, in which all separable states reside in the presence of Bloch vectors, and a straight
line, which connects the point corresponding to the correlation vector of p and the nearest vertex of the maximal
tetrahedron, where all two-qubit states reside. It is shown, however, that these properties are not maintained for

the arbitrary two-qubit states.
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I. INTRODUCTION

It is well known that entanglement of quantum states is an
important physical resource in the context of the quantum
information theories. It plays a crucial role in quantum
teleportation [1], superdense coding [2], quantum cloning [3],
quantum cryptography [4], and quantum computer technology
[5,6].! Therefore, to understand how to quantify and how to
characterize the entanglement for a given quantum state is a
highly important physical task.

Many entanglement measures have been developed over
past few years. Above all, in our opinion, the most important
entanglement measure is a distillable entanglement [10],
which quantifies how many maximally entangled states can
be constructed from the copies of the given quantum state
in the asymptotic region. The importance of the distillable
entanglement arises from the fact that the entanglement
is fragile when noises interfere with quantum information
processing. The disadvantage of distillable entanglement is its
calculational difficulty. In order to compute distillable entan-
glement analytically, we should find the optimal purification
(or distillation) protocol. If this optimal protocol generates n
maximally entangled states from m copies of the quantum state
o, the distillable entanglement for p is given by?

D(p) = lim . (1)
m—>00 m

!There are, however, several examples where entanglement does
not play an important role in quantum computation. For example,
the efficiency of Grover’s search algorithm gets worsened if the
initial state is an entangled one [7]. Another important example
is a deterministic quantum computation with one pure qubit [8].
Other simple examples are presented in Ref. [9]. Therefore, one
cannot conclude definitely that entanglement is essential for quantum
computation.

%In Ref. [10], the distillable entanglement D is divided into D; and
D, depending on one-way and two-way classical communications.
Throughout this article we only consider the two-way classical
communication.
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However, finding an optimal purification protocol is a highly
nontrivial task. It makes it difficult to compute distillable
entanglement analytically.

Fortunately, the tight upper bound of distillable entangle-
ment has been developed in Refs. [11,12]. In these references,
the new entanglement measure called relative entropy of
entanglement (REE) was introduced. It is defined as

Er(p) = min S(p|o), 2)

where D is a set of separable states and S(p||o’) is a quantum
relative entropy; that is, S(p|lo) = tr(plnp — pIno). It was
shown in Ref. [12] that Eg(p) is an upper bound of the
distillable entanglement. Subsequently, Rains [13,14] has
shown that

Er(p) = min S(pllo), 3)

where Dppr is a set of positive partial transposition (PPT)
states, is more tightly upper bound when p is an higher-
dimensional bipartite state. Using the facts that the REE
is an upper bound of the distillable entanglement and the
Smolin state [15] is a bound entangled state, the distillable
entanglement for the various Bell-state mixtures has been
analytically computed [16-18]. In order to understand the
distillable entanglement more deeply, therefore, it is important
to develop various techniques for the explicit computation of
the REE. Of course, regardless of the distillable entanglement,
the development of a calculation technique for the REE
itself is important for understanding the characterization of
entanglement more profoundly. For last few years many
properties of the REE were investigated [19]. Furthermore,
the relation between the REE and other distance measures has
been studied recently [20,21].

In this article we confine ourselves to the REE when p
is a two-qubit state; that is, p € H? ® H>. Since there is no
bound-entangled state in this case, Ex(p) and Eg(p) defined
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in Egs. (2) and (3) are same. Let o * be the closest separable
state (CSS) of p. Then E(p) is given by

Er(p) = min §(p|lo) = S(pllo™). “)
When the CSS o* is explicitly given and is full rank,
Ref. [22] has presented how to construct the set of the entangled
states, whose CSS are o*. Let |i) and X; be eigenvectors and
corresponding eigenvalues of o*. If o* is the CSS (hence,

edge) state, then its partial transposition o' is rank deficient.
Let |¢) be the kernel of ¢''; that is,

o'lp) = 0. &)

Then the set of the entangled states p(x), whose CSSs are o*,
is given by the following one-parameter family expression:

p(x) =0*—xG(o™),

(6)
G(o") = Z G li)1AP) (@D 1) (],
i,Jj
where x > 0 and
A for i = j,
T\ it v

When, however, the entangled state p is explicitly given, it is
difficult to use Eq. (6) for finding its CSS. In other words, we
have to find the reverse process of Ref. [22] in order to derive
the closed formula of the REE for the arbitrary two-qubit state
0, as Wootters [23] has done in the entanglement of formation.
Unfortunately, it is still an unsolved problem [24].

In this article we explore the reverse process of Ref. [22].
We show that the reverse process of Ref. [22] is possible,
at least for the Bell-diagonal, generalized Vedral-Plenio, and
generalized Horodecki states. We present a method for finding
the corresponding CSS systematically for these states by
generalizing the geometrical method discussed by Horodecki
in Ref. [25]. We also discuss why it is difficult to find the CSS
for the arbitrary two-qubit mixed states from the geometrical
point of view. The article is organized as follows. In Sec. II
we show how to find the CSS for the Bell-diagonal states. In
Sec. III we discuss how the geometrical objects presented
in Ref. [25], such as tetrahedron 7 and octahedron L, are
deformed in the presence of the nonzero Bloch vectors.
In Secs. IV and V we present a method for finding the
corresponding CSS for the generalized Vedral-Plenio and
generalized Horodecki states, respectively. In Sec. VI we
discuss why it is a very difficult task to find the CSS for the
arbitrary two-qubit states from the geometrical point of view.
In Sec. VII a brief conclusion is given.

II. CSS FOR THE BELL-DIAGONAL STATES

In this section we show how to find the CSS when p is the
Bell-diagonal state from the geometrical point of view. In fact,
this problem was already solved in Ref. [12] long ago. The
reason why we reconsider the same problem is to stress the
geometrical analysis.
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An arbitrary two-qubit state can be represented as follows:

1 3
p=Z|:I®I+r-a®I+I®s~0+ Z g,,mom®an:|,

m,n=1

®)

where r and s are Bloch vectors and o; is a usual Pauli matrix.
The coefficients g,,, form a real matrix and represent the
interaction of the qubits. If state p is explicitly given, one
can derive the Bloch vectors r and s and the correlation tensor
gij as follows:

r =tr(pao), s =tr(ppo), g =tr(po;®0a;), (9)
where p4 =trgp and pp = trap. It is well known that an
appropriate local unitary (LU) transformation of p can make
gmn diagonal (see appendix of Ref. [26]). Since entanglement
is invariant under the LU transformation, it is in general
sufficient to consider the case of diagonal g,, for the
discussion of entanglement. Thus, without loss of generality,

one can express p as

1 3
p=Z|:I®I+r~J®I+I®s~a+2g,,an®on:|.

n=1
(10)
If p = |Bi){Bil, where
1 1
= —(]00) +|11)), = —(00) — |11)),
1B1) ﬁ(l ) +111),  [B2) ﬁ(l ) — [11)) -
1 1
= — (]01 10)), = —(|01) — |10)),
|B3) ﬁ(l )+ 110),  |B4) ﬁ(l ) — [10))

it is easy to show that the corresponding Bloch vectors r and
s are vanishing and the corresponding correlation tensor g,
becomes

g» = diag(—1,1,1),
g4 = diag(—1,—1,—1).

g1 = diag(1,—1,1),
(12)
g3 = diag(1,1,—1),

If, therefore, p is the Bell-diagonal state, the Bloch vectors r
and s are always null vectors.

Since we are considering on the diagonal case of the
correlation tensor, we will regard, from now on, the tensor
as a vector, whose components are equal to the diagonal
elements. When r = s = 0, Horodecki has shown in Ref. [25]
that the total two-qubit states belong to the tetrahedron 7 with
vertices vy = (1,—1,1), v, = (-1,1,1), v3 =(1,1,—1), and
v4 = (—1,—1,—1) in the correlation vector space. Reference
[25] also has shown that the separable states (with r = s = 0)
belong to the octahedron £ with vertices o(i) (£1,0,0),

o8 = (0,4£1,0), and o{” = (0,0,£1). This is pictorially
represented in Fig. 1.

As Flg 1 shows, theplanes (0(+) 0, ,03 )) (o(+) 0(2+),0(3+))
(o o2 ,0(;')) and (01 0(2+) ,05) are parts of the
planes (vi,v3,v4), (v1,02,03), (vl,vz,v4) and (v2,v3,v4),
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FIG. 1. (Color online) The total Bell-diagonal states belong to
the tetrahedron (v;,v,,v3,v4) and the set of the separable states
belong to the octahedron, whose vertices are o, o3, and of.
As this figure shows, the planes (0§+),o(2_),0§_)), (0(1+),o§+),0§+)),
(o(f),o([),ogﬂ), and (o(f),oéﬂ,o({)) are contained in the planes
(v1,v3,v4), (V1,V2,V3), (V1,V2,v4), and (va,v3,v4), respectively. There-
fore, all entangled Bell-diagonal mixtures belong to the small four

tetrahedra (vl,o(lﬂ,o;*),o(;)), (vz,o(f),o(;),ogﬂ), (v3,o(l+),0;+),o(37)),

and (v4,0}”,057,0{7).

respectively.® Therefore, all entangled Bell-diagonal mix-

tures belong to the small four tetrahedra (v1,0(1+) o(_),o(;r)),

-+ + (= - =) (=
(Uz,O(l ),0(2 ),0(3 M, (U3,0(1 ),0(2 ),0(3 ), and(v4,0(1 ),0(2 ),0(3 ).

Now, we show how to perform the reverse process of
Ref. [22] when p is an entangled Bell-diagonal state. This
can be achieved by following two theorems.

Theorem 1. Every Bell state has infinite CSSs, which cover
fully the nearest surface of the octahedron L.

Proof. Tt is sufficient to prove this theorem when p =
[B1){B1]. When p = |B;){(Bi| (i =2,3,4), one can prove the
theorem similarly.

Let o be a following Bell-diagonal state:

3
1
azz{1®1+2pnon®on], (13)

n=1

with p = (x,y,z). Then it is easy to show that the spectral
decomposition of o is

14+x— 1—
o= s+ s
1 - l—x—y—

P s g sl

(14)

3This statement can be confirmed by deriving the respective plane
equations. The plane equations for (vy,v3,vs), (V1,V2,03), (V1,02,04),
and (v2,v3,1)arex —y—z=lLx+y+z=1,—x—y+z=1,
and —x + y — z = 1, respectively. It is easy to show that these
plane equations are the same planes with the planes (o(f’),og_),og_)),

0(1”,0(2“ ,ogﬂ), (0(17),0;7),0(;)), and (o(f),o;“,o({)), respectively.
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The nearest surface of £ from p = |8;)(B1] is (0(1”,0({),0%” ,

whose surface equation is x — y 4+ z = 1. If o belongs to the
surface (o(ﬁ),o(*),ogﬂ), it is easy to show that S(p||o) = In2,
which exactly coincides with the REE of the Bell states [11].
Therefore, o on the surface (0(1“,0(27),0(;)) is the CSS of
1B1) (Bl

Now, let us consider the case where o belongs to another
surface. For example, let us assume that o belongs to the
surface (o(1+),0(2+),0(3_)), whose surface equation is x +y —
z = 1. Then S(p||o) reduces to In2 — In x, which is less than
In2if x # 1. Therefore, o on (0(1+),0§+),0(3_)) is not the CSS of

|B1)(B1]. In same way, one can show that o on (0(17),0?) 0§+)

or (0(,_),0(2_),0§_)) is not the CSS of |8;) (81|, which completes
the proof.

Theorem 2. The CSS of the any Bell-diagonal state p
corresponds to the crossing point between the nearest surface
of £ from p and the straight line ¢, which connects p and the
nearest vertex of 7 from p.

Proof. If o is the CSS of p, the CSS of p = xp + (1 — x)o
isalso o [12]. Let p be p = |B1)(B1|. Then Theorem 1 implies
that o can be any point on the surface (0(1+),0;_),og+)). Let

0 belong to the small tetrahedron (vl,o(f),o([),o(;)). Note
that p corresponds to an internally dividing point of the line
segment po . Since Eq. (6) implies that the set of the entangled
states which have the same CSSs should be represented by the
straight line, the only possible o as the CSS of p is a crossing
point between a line pp and the surface (0(1+) ,0(2_) ,0(3+)),
which completes the proof for the Bell-diagonal
states.

By making use of Theorem 2, one can always find the
CSS o if p is a Bell-diagonal state. Figure 2 shows how to
find the CSS for the Bell-diagonal state. First, extend the
line segment between p and the point corresponding to the
nearest vertex of 7. Second, compute the coordinate of
the crossing point between the line and the nearest surface
of the octahedron L. Finally, find the CSS which corresponds

V4

0(3 gr)

V2

FIG. 2. (Color online) How to find the CSS for the Bell-diagonal
state. First, extend the line segment between p and the point
corresponding to the nearest vertex of 7. Second, compute the
coordinate of the crossing point between the line and the nearest
surface of the octahedron L. Finally, find the CSS of p which
corresponds to the crossing point.
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TABLE I. Eigenvalues and eigenvectors of p in Eq. (15).

Eigenvalues of p

Eigenvectors of p

pr = {(1 —q3) & My}
ve = 1 {(1+¢3) & M)}

[vi) =

lns) = 77 (g1 +gI01) — {(r —5) F M1} [10)]
35 [(g1 = g2)I00) — {(r +5) F Mx}[11)]

to the crossing point. This completes the reverse process of
Ref. [22].

III. GEOMETRICAL DEFORMATION OF 7 AND £

When the Bloch vectors r and s are nonzero, the geomet-
rical objects 7 and £ should be deformed. In this section
we will discuss how 7 and £ are deformed. In order to
perform the following analysis analytically, we consider in
this article the case where r and s are parallel to each
other. It is worthwhile noting that if r and s are x or y
direction, one can make them to be z directional via the
appropriate local-unitary transformation. For example, if they

I+r+s+gs 0
1 0 l+r—s5s—gq3
p_z 0 q1+q2
q1 — q2 0

The eigenvalues and eigenvectors of p are summarized in
Table 1.
In Table I M, M5, A+, and A, are given by
My = (r =) + (g1 + @)%
My = J(r + 52+ (q1 — )%
Az =V =) F MY + (g1 + @)
As = V{(r +9)F M) +(q1 — @)

Then the deformation of 7 can be obtained from the positivity
condition of p. Since deformation should be a set of the
boundary states, the condition of the deformation becomes

(16)

min(u_,v_) = 0. (17)

One can make two surfaces by making use of Eq. (17).
Each surface corresponds to min(u_,v_) =u_ =0 or
min(u_,v_) = v_ = 0. Gluing these surfaces together yields
the deformation of 7.

In Fig. 3 we plot the deformation of 7 when r = s = 0.3
[Fig. 3(a)], r = —s = 0.3 [Fig. 3(b)], r = s = 0.5 [Fig. 3(c)],
and r = —s = 0.5 [Fig. 3(d)]. For comparison, we plot 7

“Bven if r and s are not parallel to each other, one can make them
to be z directional via an appropriate local-unitary transformation. In
this case, however, the correlation term loses its diagonal property.

are x directional, p’ = (U ® U)p(U @ U)f, where

v= )

has z-directional Bloch vectors and its correlation vector
changes from (g;,g2,83) to (—g3,82,81)- Similarly, one can
change the state with y-directional Bloch vectors into a state
with z-directional Bloch vectors without altering the diagonal
property of the correlation term.

For this reason it is reasonable to assume that the Bloch
vectors are z directional by writing r = (0,0,r) and s =
(0,0,5).* In this case the arbitrary two-qubit state p defined
in Eq. (10) with g = (¢1,92,93) reduces to

0 91— g2
+ 0
q1 T 42 (15)
l—r+s—q3 0
0 l—r—s+gqs

together. For convenience, we will denote the deformation of
T with fixed r and s as 7, ;. From Fig. 3 one can see that the
deformation 7, has the following two characteristics. First
is that the effect of the nonzero Bloch vectors is to shrink
the geometrical object. The shrinking rate becomes larger
with increasing |r| and |s|. When r = s, the deformation
is biased toward the (vi,v;) region. When, however, r =
—s, the deformation is biased toward the (vs,vs) region.
The shrinkage of 7,, implies that the number of proper
quantum states reduces with increasing || and |s| due to
the constraint trp> < 1. The second characteristic of 7.5 is
that it has a continuous smooth surface while 7 has sharp
edges. This fact arises from the condition min(u_,v_) = 0.
When r = s = 0, this condition generates the four surface
equations

g +q)+gz=1, X(q —qp)—qgzs=1, (18)
each of which corresponds to the surface of 7. When, however,
r and s are nonzero, these four equations reduce to the
following two equations:

VI =2+ (g +q2)* +g93 =1,
Vo +92+(q —q)* —qs = 1.

19)

This implies that the deformation 7, can be formed by
attaching two smooth surfaces when r # =s.

052325-4
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(a) v4

{

V2 V2

FIG. 3. (Color online) The deformation of 7 is plotted when r =
s=03@),r=—s=03(Mb),r=s=05(),andr =—-s=0.5
(d). For comparison, we plot 7 together. The appearance of nonzero
Bloch vectors generally shrinks the tetrahedron. The shrinking rate
becomes larger with increasing norm of the Bloch vectors.

Now, we discuss the deformation of £ when the Bloch
vectors are r = (0,0,7) and s = (0,0,s). We will denote this
deformation as L, ;. We assume that p in Eq. (15) is a separable
state. In this case the PPT state of p, say p", should be positive.
The eigenvalues and the corresponding eigenvectors of p are
summarized in Table II.

In Table Il M|, M}, A, and A are defined as

M{ = Ml’qz_)_qz = (r — )+ (q1 — )%,

M} = M,| = +52+(q1 + q)%

Q=g

(20)

AL = o =) F M) + (@1 — a2,

AL = o +9)F MIY + (@1 + g2

PHYSICAL REVIEW A 81, 052325 (2010)

FIG. 4. (Color online) The deformation of L is plotted when r =
s=03@),r=—s=03(0b),r=5s=0.5(),and r = —s =0.5
(d). For comparison, we plot L together. The appearance of nonzero
Bloch vectors generally shrinks the octahedron. The shrinking rate
becomes larger with increasing norm of the Bloch vectors.

Then L, ; can be obtained from the positivity condition of p".
Since, furthermore, £, ; should be a set of the edge states, the
condition for the deformation of £ reduces to

min(u",v0) = 0. 1)

As the deformation of 7, Eq. (21) generates two surfaces,
each of which corresponds to min(u”,v")=ul =0 or
min(u”,vT") = vT = 0. Gluing these two surfaces, one can
derive the deformation of L.

In Fig. 4 we plot the deformation of £ at r =5 =0.3
[Fig. 4(a)], r = —s = 0.3 [Fig. 4(b)], r = s = 0.5 [Fig. 4(c)],
and r = —s = 0.5 [Fig. 4(d)]. For comparison, we plot £
together. Like the deformation of 7, Fig. 4 indicates that the
effect of the nonzero Bloch vectors is to shrink £ toward a
particular direction. Figure 4 also shows that the shrinking rate
becomes larger and larger with increasing norm of the Bloch
vectors. Like 7, ; again, the deformation of the octahedron L, g
also has smooth surfaces while £ has sharp edges.

IV. CSS FOR THE GENERALIZED VEDRAL-PLENIO
STATES

In this section we show how to derive the CSS for the
Vedral-Plenio (VP) states. The VP states are defined as mixture

TABLE II. Eigenvalues and eigenvectors of p'.

Eigenvalues of p'

Eigenvectors of p"

ph = 1{(1 —g3) = M[}
vl = H +g3) £ M)

1) = Frlt@ — g2)I01) — {¢ = ) F M{}[10)]
vi) = 3rl(g1 +¢2)100) — (¢ + ) F M7 }11)]
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of one Bell state and separable states, which are not orthogonal
to the Bell state. The most general example of the VP
state is

pop = M 1B1)(Bil + 22[00)(00] + As[I1)(11],  (22)

where |8;) = (1/+/2)(|00) + [11)) and A; 4+ Ay + A3 = 1.
Let the arbitrary VP state be

1
pvpzZ|:I®I+rvp'0’®l+l®svp'a

3
+ ) (o ® on} (23)

n=I1

and its CSS be

1
nvpzZ|:]®1+uvp-6®]+l®vvp'a

n=I1

3
+ ) (Tphon ® on}. (24)

The following theorem shows how to compute u,p, vyp, and
Typ from pyp.

Theorem 3. If my, is the CSS of pyp, uy, =ry, and
vyp = Syp. Let £ be a straight line which connects ¢, and the
nearest vertex of 7. Then 7, is a crossing point between £ and
»Cr.x-

Proof. We prove this theorem using following procedure.
First, we assume that this theorem is correct. Then, following
this theorem, one can derive the trial CSS of p,,. Next, by
making use of Eq. (6) we show that this trial CSS is a really
the CSS of pyp.

Since other VP states can be derived from Eq. (22) by
local-unitary (LU) transformation, it is sufficient to show that
the CSS of py, in Eq. (22) satisfies this theorem. The other
case can be proven similarly. For py, in Eq. (22) ryp, syp, and
t,p become ry, = (0,0,r), sy, = (0,0,s), and &y, = (11,52,13),
where

r=s=MA—2XA3, th=—h=»XA, t3=1. (25)

Then a point P = (q1,92,q93) on the line ¢ satisfies g, =
—q; and g3 = 1. If the point P = (g1,92,93) is a crossing
point between £ and L, ;, the corresponding separable state
satisfies

nt= =3l v =30 = a2 =230, (26)

where u and vL are defined in Table II. Therefore, the
CSS condition (21) implies g; = 0, which results in 7., =
(0,0,1). If, therefore, this theorem is correct, the CSS of
Pvp 1S

1
Typ = Z[1®1+(K2 A3)(03 @1 + 1 ®03) + 03 ® 03]

*1+x2 00 0
00 0 o7
00 0
0 0 %423

PHYSICAL REVIEW A 81, 052325 (2010)

In order to show that 7y, in Eq. (27) is really the CSS of
Pyp, it is convenient to define another edge state,

ﬁvp =1® Gx)ﬂvpﬂl by UX)T

€ 0 0 0
0 242 € 0
= 2 , (28)
0 7]4—)»3 0
0 0 0 e

where the infinitesimal positive parameter € is introduced for
convenience. This parameter will be taken to be zero after
calculation.

Let us define an edge state

R 0 0 O
0 R, Y O

0z = ) (29)
0 Y Ry O

0 0 0 R4

with Y = /R R4 and R, R3; > R; R4. Then, by making use of
Eq. (6), Ref. [22] has shown that the set of the entangled states
which have o as the CSS is represented as

pz(x)
R, — xR, 0 0 0
0 Ry — xR, Y —xY¥ 0
- 0 Y—x¥ Ry—xRy 0 ’
0 0 0 Ry — xRy
(30)
where x > 0 and’
_ Y?
Ri=Rj=——,
Ri+ R4
Ry, = 2Y%d[(R; — R3)(R,L — 7) + 2Y?L], 1)

Ry = —2R| — Ry,
Y = Yd[2Y*(R> + R3)L + (R, — R3)*z].

In Eq. (31) we define

R3)?> + 4R Ry,

= R zln[(Rz+R3)+z]

(Ry+R3) —z

1 (32)

(R + Ry2L°
Now, we identify o, with 7,, by putting R} = R4 =
Y=¢€¢, Ro=Xx1/2+ X, and R; = )»1/24—)»3 Then it is

straightforward to compute Ri, Ry, R3, Ry,and Y. After taking
the € — 0 limit, one can show R; = R, = R; = R4 = 0 and

SWe corrected the sign mistake of Ref. [22].
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FIG. 5. (Color online) How to find the CSS for the VP states.
Panels (a) and (b) correspond to r =5 =0.3 and r =5 =0.5,
respectively. To find a CSS, make a straight line ¢ first, which
connects the nearest vertex of 7 and a point £,,. Second, compute
the coordinate for the intersection point between ¢ and L, ;. Third,
identify the crossing point with 7,. Keeping u,, = r,p and v, = s,
one can find the CSS of the VP state.

Y = —|xy — A3|/2L, where

1+ [Aa — A
=IHMBO. (33)
I — A2 — A3]

Therefore, the set of the entangled states which have 7, as
the CSS can be represented by

0 0 0 0
0 M4 xl2=2sl
pr(x) = T (34)
0 xl=hl 44540 0
0 0 0 0

Finally, the set of the entangled states which have 7y, as the
CSS can be derived by taking the inverse LU transformation;
that is,

pz(x) = 1 ® 0:) 57(x)(1 ® 7). 35)

It is easy to show that pz(x) reduces to p,, in Eq. (22) when
X = Xxyp = AL /A2 — A3| > 0, which completes the proof.

Figure 5 shows how to find the CSS for the VP state
geometrically when r = s = 0.3 [Fig. 5(a)] and r =5 = 0.5
[Fig. 5(b)]. Figure 5 indicates that the generalized VP states
are on the edges of 7. First we make a line, which connects the
nearest vertex of 7 and p,,. Then we compute the coordinate
of the crossing point T between the line and £, . Finally,
the CSS =y, of py, can be computed by Eq. (24), keeping
the Bloch vectors.

V. CSS FOR THE GENERALIZED HORODECKI STATES

In this section we discuss how to derive the CSS of the
generalized Horodecki states. The Horodecki states are defined
as a mixture of one Bell state and separable states, which are
orthogonal to the Bell state. The most general example of the
VP state is

pu = AlB1) (Bl + A2|01)(01] + A3[10)(10[,  (36)

with A; + A2 + A3 = 1. By contrast with the VP state, the
Horodecki state (36) is separable when )L% < 4A,A3. This can
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be easily understood by computing the concurrence of pp,
which is

M =2y if A = 24 Aahs,
Clon) = . 37
0 if )\1 < 2\/)»2)\3.

Thus, C(py) becomes zero when A% < 4A,A3, which indicates
that pp is separable in this region.
Let the arbitrary Horodecki state be

1
pH=Z|:I®I+rH-a®I+I®sH-a

3
+ ) (t1)non ® an] (38)

n=1

and its CSS be

1
nH=Z|:I®I+uH~a®I+I®vH-a

3
+ ) oy ® an}. (39)

n=I

The following theorem shows how to compute uy, vy, and
Ty from py.

Theorem 4. If my isa CSS of py, uy =ry and vy = sy.
Let ¢ be a straight line which connects ¢4 and the nearest
vertex of 7. Then 7y is the nearest crossing point between £
and L, .

Proof. We will prove this theorem by following the same
procedure as Theorem 3. Since other Horodecki states can
be derived from pgy in Eq. (36) by LU transformation, it
is sufficient to show that the CSS of Eq. (36) satisfies this
theorem. By identifying Eq. (36) with Eq. (38) one can easily
show thatr g, sy, and ¢y become ry = (0,0,r), sy = (0,0,s),
and ty = (t1,1,13), where

r=-—-—5= )»2 — )»3,

h=—-th=»A, B3=2)1—1. (40

Then a point P(q;,g2,93) on the line £ satisfies g, = g and
g3 =2q1 — 1.

Let the point P be the crossing point between £ and L, ;.
Then ' and v! for the state corresponding to the point P are
given by

1
nt =0 —an - \/m], vl = %- (41)

Therefore, the CSS condition min(u,v) =0 gives
two solutions, P; = (¢q1,—¢1,2¢q1 — 1) and P, = (0,0,—1),
where

g1 = 30 +212)(A1 + 243). (42)

Since we have to choose the nearest point from ty, the
solution we want is the former. Therefore, Ty becomes
(91,—q1,2q1 — 1). Then Theorem 4 claims that the CSS of
PH 18
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1
TH = Z[1®1+(K2—)»3){03®1—1®03}+61101®01—6]102®02+(26]—1)03®03]

(A1 +202)(A1 + 2A3) 0

1 0 (A1 + 2h)?
1 0 0
(b1 4 222)(h 4 223) 0

Now, we will show that wy in Eq. (43) is really the CSS
of py by making use of Eq. (6). In order to show this, we
define 7y = (1 ® o)y (1l ® 0,)f. Then by making use of
Egs. (29) and (30) it is straightforward to find a set of the
entangled quantum states p(x), whose CSSs are 7p. After
taking the inverse LU transformation, one can derive p(x) =
(1 ® ) 5(x)(1 ® o,). The expression of p(x) is

Y +xn 0 0 Y +xn
0 R —xn 0 0
p(x) = . (44
0 0 Ry — xn 0
Y +xn 0 0 Y +xn

where x > 0 and

1 1
Ri= (i + 20)% Ry = e 1+ 243)%,

(45)
Y = 1()» 4+ 222)(Aq + 2X3) = v
—41 2)(A1 3’n_R1+R4'
When
1 /A
x:xH=—<—1—Y>, (46)
n\ 2

p(x) reduces to py in Eq. (36). It is easy to prove that
xg = 0 if A2 > 4,23, which is an entangled condition for
ou. Therefore, Theorem 4 is completely proved.

Figure 6 shows how to find the CSS for the generalized
Horodecki state py when r = —s = 0.3 [Fig. 6(a)] and r =
—s = 0.5[Fig. 6(b)]. If py is explicitly given, compute r g, s g,

V3

FIG. 6. (Color online) How to find the CSS for the generalized
Horodecki states. Panels (a) and (b) correspond to r = —s = 0.3
and r = —s = 0.5 respectively. In order to find the CSS, make a
straight line £ first, which connects the nearest vertex of 7 and a
point ¢5. Second, compute the coordinate for the nearest crossing
point between ¢ and L, . Third, identify the crossing point with
Ty. Keeping uy = ry and vy = sy, one can find the CSS of the
Horodecki state.

0 (A1 + 202)(A1 + 2A3)
0 0

(A +243)? 0 @
0 (A + 202)(A + 2X3)

and ¢t 5. Then make a straight line which connects a point ¢ 5
and the nearest vertex of 7. Find the crossing points between
the line and L, ;. As Fig. 3 shows, there are two intersection
points P; and P, for the Horodecki states. This is why the
CSS condition min(u” ,v") = 0 gives two different solutions.
Using the nearest crossing point (P; in Fig. 6), one can derive
Ty straightforwardly. Finally, using Eq. (39) with imposing
uy =ry and vy = sy, one can derive 7y, the CSS of py.

VI. DIFFICULTIES IN FINDING THE CSS FOR
ARBITRARY STATES

In the previous sections we have shown how to find the
CSS for the Bell-diagonal, generalized VP, and generalized
Horodecki states. In fact, it is possible to find the CSS because
those states exhibit the following features. Let r, s, and ¢ be
Bloch and correlation vectors of those states. Let #, v, and
be Bloch and correlation vectors for the corresponding CSS of
those states. Then the features are as follows.

(i) u=randv =s.

(i) T can be computed from the crossing point between the
straight line ¢ and the surface for a set of the separable states
Lys.

However, such simple but nice features are not maintained
for the general mixtures. For example, let us consider the
comparatively simple model introduced in Eqgs. (29) and (30).
It is straightforward to show that the first property, that is,
u = r and v = s, is not maintained unless R, = R3.® In order
to find the CSS for the arbitrary states, therefore, we have to
find the explicit relations between (r,s) and (u,v). As far as
we know, still this is an unsolved problem.

In addition, one can show that the second property is not
maintained too for the general mixtures. Using Eq. (6) we plot
the T (correlation vector of the CSS)-dependence of ¢ (cor-
relation vector of the entangled state) with varying parameter
x when min(u”,vT) = vI = 0. Since similar behavior arises
when min(ul,vT) = uL = 0, we have not included this case
in Fig. 7. The four panels in Fig. 7 correspond to, respectively,
r =s = 0.3[Fig.7(a)],r = —s = 0.3 [Fig. 7(b)],r =s =0.5
[Fig. 7(c)], and r = —s = 0.5 [Fig. 7(d)]. For convenience,
we plot 7 and L, ; together in each figure. Each line in Fig. 7
represents a set of £, whose CSS has the same t. As Fig. 7
exhibits, not all lines pass one of the vertices of 7. This fact

®When R, = R3;, one can show [pz(x),0,]=0. Therefore,
Erlpz(x) ® pl = Erlpz(x)] + Er(p) for all two-qubit mixtures p
[14].
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FIG. 7. (Color online) Illustration of how property (ii) is not
maintained for the arbitrary two-qubit states. The four panels
correspond to r =5 =0.3 (a), r = —s =03 (b), r =5 = 0.5 (c),
and r = —s = 0.5 (d). For convenience, we plot 7 and L, ; together
in each figure. Each line represents a set of ¢ whose CSS has the same
7. Not all lines pass one of the vertices of 7. This fact indicates that
property (ii) is not maintained for the general mixtures.

indicates that, unfortunately, property (ii) is not maintained for
the arbitrary states.

The nonmaintenance of property (ii) can be proved on an
analytical ground by making use of the simpler model. Let
us consider oz in Eq. (29) and pz(x) in Eq. (30). Then the
Bloch vectors r, s and the correlation vector ¢ of pz(x) are
r =(0,0,r),s = (0,0,s), and ¢t = (¢1,%,,13), where

r=(Ri+R—Rs— Ry) — x(R, — Ry),
s=(Ri— R+ Rs— Ry) +x(R, — R3), 47)
t1=t2=2Y—2x)_’, I3=(R1—R2—R3+R4)—4)CR1.

Of course, if we take the x — 0 limit in Eq. (47), the
corresponding quantities are the Bloch vectors and the cor-
relation vector of oz. Now, let us consider another state 7,
which can be obtained from oz by changing ¥ — Y’ and
R — R! (i =1, ...,4). In order to ensure that 77 is the CSS,
werequire Y’ = ,/R| R} and R, R} > R R). Thenthe setof the
entangled states &£z(x"), whose CSSs are 7z, can be obtained
from pz(x)by changingy — Y, R; — R} (i =1, ...,4),and
x — x’. Thus, Bloch vectors r’, s’ and correlation vector ¢’
of &z(x") are r' = (0,0,7"), 8" = (0,0,s"), and ¢’ = (¢],15,13),
where

r'=(R,+ R, — R, — R)) — x'(R, — R}),
s'= (R, — R+ R, — R)+x'(R,—R}),  (48)
1 =1t,=2Y-2x'Y', t;=(R|—R,—R,+R))—4x'R].

PHYSICAL REVIEW A 81, 052325 (2010)

Then it is straightforward to show that the condition ¢ = ¢’
imposes
Y'(F—F)—4(Y — Y')R]
T 4R TR
Y(F—F)—4(Y —Y)R,
T 4R - TR)

3

(49)

/

’

where 7 =R, — Ry — R3+ Ry and 7/ =R, — R, — R, +
R). Thus, one can compute the crossing point ¢t =¢ =
(1,12, 13), where u; becomes

4YY'R —Y'YR) - YY'(F—F)
2(Y'R, — YR)) ’

_ MY —Y)R R, — (FYR] —F'Y'R))

N Y'R — YR, '

M1 = H2 =
(50)

M3

As a special case, we consider the Bell-diagonal case
by letting Ri=R4=Y = 2R1 = 2R4 = —2R2 = —2R3 =
a, Ro=Ry=-2Y=b, R, =R,=Y =2R|=2R,=
—2R, = —2R, =d’, and R, = R, = —2Y' = b'. Of course,
one can show directly that pz(x) and £z(x’) are really Bell-
diagonal states. Using the normalization conditions 2(a +
b) = 2(a’ 4+ b’) = 1, it is easy to verify that the crossing point
(1,2, 43)issimply iy = pp = land w3 = —1, whichis one
of the vertices of 7. It is worthwhile noting that the crossing
point is independent of the particular choice of Bell-diagonal
states pz(x) and &£z(x"). This fact implies that all straight lines,
which connect 7 and ¢, pass one of the vertices of 7, which is
consistent with Theorem 2.

However, for the arbitrary mixtures Eq. (50) implies that
the crossing point (141,12, 13) is dependent on the choice of
the entangled states pz(x) and &z(x’). This is why property
(i1), which holds for the Bell-diagonal, generalized VP, and
generalized Horodecki states, does not hold for the arbitrary
mixture as Fig. 7 has indicated. Therefore, in order to derive the
closed formula of Eg(p) for the arbitrary two-qubit mixtures
0, we have to understand how property (ii) is modified when
r, s, and ¢ are arbitrary. Unfortunately, this is still an unsolved
problem too.

VII. CONCLUSION

In this article we have considered how to find the CSS
in the two-qubit system from the geometrical point of view.
Of course, one can straightforwardly compute the REE of the
state p if its CSS is found. Therefore, it is important to develop
a technique for finding a CSS to overcome the calculational
difficulty of the REE. Furthermore, since the REE is a tight
upper bound of the distillable entanglement, finding the CSS
is also important for understanding the nature of the optimal
(or near-optimal) purification protocols.

If p is of Bell-diagonal, generalized VP, or generalized
Horodecki state, we have shown how to find the CSS of p,
say o, systematically by proving the following two properties:
(i) The Bloch vectors of o are identical to those of p. (ii) The
correlation vector of o exactly corresponds to the crossing
point between the line £ and the geometrical object £, ;. Using
these two properties, it is straightforward to find the CSS of p.
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As we have shown in the previous section, however, these
two properties are not maintained for the general two-qubit
states. Therefore, in order to derive the closed formula of
Er(p) for the arbitrary mixture p, we have to understand how
these two properties are modified when Bloch and correlation
vectors of p are arbitrary. The research into these issues is in
progress and will be presented elsewhere.

Another interesting issue, which we will explore further,
is the REE and the distillable entanglement for the higher-
qubit or -qudit systems. A few years ago, the analytical
expressions of the distillable entanglement were obtained for
some higher-dimensional bipartite states [16—18]. Authors
in those references used the upper-bound criterion D < Eg
and the separability property of the Smolin’s unlockable

PHYSICAL REVIEW A 81, 052325 (2010)

state [15] in various cuts. We would like to modify Eq. (6)
to be applicable not only for low-rank ¢* but also for a
higher-dimensional system. If the generalization of Eq. (6) is
possible, we can use it to compute the REE and the distillable
entanglement for many more higher-dimensional states. It
may enable us to understand the nature of the optimal (or
near-optimal) purification protocols. This work is in progress
too.
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