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In this paper we have tried to interpret the physical role of three-tangle and π-tangle in
real physical information processes. For the model calculation we adopt the tripartite
teleportation scheme through various noisy channels. The three parties consist of sender,
accomplice and receiver. It is shown that the π-tangles for the X- and Z-noisy channels
vanish at the limit κt → ∞, where κt is a decoherence parameter introduced in the master
equation in the Lindblad form. At this limit the maximum fidelity of the receiver’s
state reduces to the classical limit 2/3. However, this nice feature is not maintained
for the Y- and isotropy-noise channels. For the Y-noise channel the π-tangle vanishes
when 0.61 ≤ κt. At κt = 0.61 the maximum fidelity becomes 0.57, which is much
less than the classical limit. Similar phenomenon occurs for the isotropic noise channel.
We also compute analytically the three-tangles for the X- and Z-noise channels. The
remarkable fact is that the three-tangle for the Z-noise channel coincides exactly with the
corresponding π-tangle. In the X-noise channel the three-tangle vanishes when 0.10 ≤ κt.

At κt = 0.10 the fidelity of the receiver’s state can reduce to the classical limit provided
that the accomplice performs the measurement appropriately. However, the maximum
fidelity becomes 8/9, which is much larger than the classical limit. Since the Y- and
isotropy-noise channels are rank-8 mixed states, their three-tangles are not computed
explicitly in this paper. Instead, their upper bounds are derived by making use of the
analytic formulas of the three-tangle for other noisy channels. Our analysis strongly
suggests that different tripartite entanglement measure is needed whose value is between
three-tangle and π-tangle.
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It is well-known that quantum entanglement is a valuable physical resource in quantum

information theories [1]. Among the best known applications of entanglement are quantum

state teleportation [2] and superdense coding [3]. Furthermore, entanglement is responsible

for the speed-up of the quantum computer [4]. In this reason there has been a flurry of activity

recently in the research of entanglement.

Many new properties for the entanglement of three- or higher-qubit pure states have been

reported in the recent papers [5]. However, it is in general more difficult to understand the

properties of entanglement for mixed states except the bipartite casea. These difficulties we

are about to discuss originate from the fact that the mixed state entanglement is defined by

a convex-roof extension [6, 7] of the pure state entanglement. Therefore, in order to compute

the entanglement defined by convex-roof method one should derive the optimal decomposition

for a given mixed state. Generally, however, it is a non-trivial task to derive the optimal

decomposition for arbitrary mixed states. This computational difficulty makes it hard to

characterize the multipartite entanglement for mixed states.

For two-qubit states, fortunately, Wootters found how to derive the optimal decomposition

for the concurrence, one of the entanglement measure for bipartite states, in Ref.[8, 9]. Thus,

one can compute the concurrence C(ρ) for arbitrary mixed states ρ by Wootters formula

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (1)

where λi’s are the eigenvalues, in decreasing order, of the Hermitian matrix
√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√
ρ.

One of the most fundamental properties of entanglement is monogamy. For three qubits

the trade-off is described by Coffman-Kundu-Wootters(CKW) monogamy inequality [10]

C2
AB + C2

AC ≤ C2
A(BC), (2)

where CAB and CAC are concurrences for the reduced states ρAB = TrC |ψABC〉〈ψABC | and

ρAC = TrB|ψABC〉〈ψABC |, and CA(BC) is a concurrence between a pair BC and A. Therefore,

CA(BC) represents the total entanglement of the qubit A arising due to the remaining qubits.

For pure states C2
A(BC) reduces to 4detρA, where ρA = TrBC |ψABC〉〈ψABC |, and is called

one-tangle. In this sense, the inequality (2) indicates that the total one-tangle is greater than

sum of two-tangles.

This monogamy implies that the quantity τABC ≡ C2
A(BC) − (C2

AB + C2
AC), known as

residual entanglement or three-tangle, represents true three-particle entanglement. For the

three-qubit pure state |ψ〉 =
∑1

i,j,k=0 aijk|ijk〉 the three-tangle τABC becomes[10]

τABC = 4|d1 − 2d2 + 4d3|, (3)

where

d1 = a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011, (4)

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+a011a100a101a010 + a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100.

aEven for bipartite case still we do not know how to compute the concurrence of the arbitrary mixed states
in the qudit system except qubit case.
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The three-tangle defined by Eq.(3) coincides exactly with the modulus of a Cayley’s hyper-

determinant[11, 12] and is an invariant quantity under the local SL(2, C) transformation[13,

14].

The three-tangle (3) has following two important properties. Firstly, for a completely

separable (A−B−C) and biseparable (A−BC, B−AC, AB−C) states τABC becomes zero.

This means that the three-tangle quantifies truly tripartite entanglement contained in a pure

three-qubit state. Secondly, the three-tangle is identically zero for the W class states and

strictly positive for the Greenberger-Horne-Zeilinger(GHZ) class states, where a classification

is introduced by Dür, Vidal and Cirac [15]. In particular, for the GHZ [16]

|GHZ〉 =
1√
2

(|000〉 + |111〉) (5)

and W [15]

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) (6)

states the three-tangles become

τABC(|GHZ〉) = 1 τABC(|W 〉) = 0. (7)

The whole set of three-qubit pure states can be divided into subsets of completely separable,

biseparable, GHZ-type, and W-type states through stochastic local operation and classical

communication(SLOCC). The subset of GHZ states is an open set whiles other subsets are

compact. It is shown that GHZ is the only class of three-qubit states which are not determined

by their two-partite marginals [17] and arbitrary W states are uniquely determined by their

two-party reduced density matrices [18]. That is, GHZ states possess a genuine tripartite

entanglement and W states possess a genuine two partite entanglement. The three-tangle is

positive on the open subset of GHZ states and decreases monotonically as approaching to the

boundary of the open subset. Eventually it vanishes at the compact subset of W class. Thus,

the three-tangle quantifies genuine tripartite, i.e. GHZ-type, entanglement of a three qubit

state, but does not detect W-type entanglement at all [19].

For mixed states the three-tangle is defined by a convex-roof method[6, 7] as follows:

τABC(ρ) = min
∑

i

piτABC(ρi), (8)

where the minimum is taken over all possible ensembles of pure states. The pure state

ensemble corresponding to the minimum τABC is called optimal decomposition. It is in

general difficult to derive the optimal decomposition for arbitrary mixed states. Fortunately,

Lohmayer et al [20] have derived recently the optimal decomposition for the mixed state ρ of

the following form

ρ(p) = p|GHZ〉〈GHZ| + (1 − p)|W 〉〈W | (9)

and computed explicitly the three-tangle. They also have found that the CKW inequality (2)

holds for mixed states(as well as for pure states). Subsequently, the three-tangle for the rank-2

mixed state composed of the generalized GHZ and generalized W states has been computed

in Ref.[21]. Furthermore, in Ref.[22] the optimal decompositions and the three-tangle for the
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rank-3 mixed state composed of GHZ, W, and flipped W states have been derived explicitly.

Most recently, the three-tangle for the rank-4 mixed states composed of 4-different GHZ states

has been computed explicitly in Ref.[23].

On the other hand, in order to detect the three-party entanglement of W states we need

to use a new three-party entanglement measure different from the three-tangle. One of the

candidates is a π-tangle discussed in Ref.[24]. The π-tangle is defined in terms of the global

negativities [25]. For a three-qubit state ρ they are given by

NA = ||ρTA || − 1, NB = ||ρTB || − 1, NC = ||ρTC || − 1, (10)

where ||R|| = Tr
√
RR†, and the superscripts TA, TB and TC represent the partial transposes

of ρ with respect to the qubits A, B and C respectively. Using the separability criterion

based on partial transpose [26, 27, 28] it is easy to show that the global negativities vanish

for separable states. It is worthwhile noting that the computation of the global negativities is

relatively simple compared to the concurrence or three-tangle for mixed states since it does

not need the convex-roof extension. In addition, the negativities also satisfy the monogamy

inequality

N 2
AB + N 2

AC ≤ N 2
A(BC) (11)

like concurrence. Then, the π-tangle is defined as

πABC =
1

3
(πA + πB + πC), (12)

where

πA = N 2
A(BC)−(N 2

AB +N 2
AC) πB = N 2

B(AC)−(N 2
AB +N 2

BC) πC = N 2
(AB)C −(N 2

AC +N 2
BC).

(13)

It is easy to show that the π-tangles for |GHZ〉 and |W 〉 become

πABC(|GHZ〉) = 1 πABC(|W 〉) =
4

9
(
√

5 − 1) ∼ 0.55. (14)

Thus the π-tangle detects W-like(as well as GHZ-like) entanglement.

In this paper we would like to explore the physical role of the tripartite entanglement in

the real quantum information process. In order to discuss this issue we adopt the tripartite

teleportation scheme discussed in Ref.[29]. Similar issue was discussed in Ref.[30], where

the physical role of the concurrence is discussed in the bipartite teleportation through noisy

channels. Ref.[30] has shown that the concurrences of the mixed state quantum channels

arising due to some noises vanish in the region of F̄ ≤ 2/3, where F̄ is an average fidelity

between initial Alice’s unknown state and final Bob’s state. Since F̄ = 2/3 corresponds to the

best possible score when Alice and Bob communicate with each other through the classical

channel[31], this result indicates that the entanglement of the quantum channel is a genuine

physical resource for the teleportation process.

This paper is organized as follows. In section II we re-formulate the tripartite teleporta-

tion process[29] in terms of density matrices. This re-description allows us to formulate the

tripartite teleportation process when quantum channel is a mixed state. Several basic quanti-

ties are calculated in this section, which are essential for the calculation of various fidelities in
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next sections. In section III we compute the various fidelities when the tripartite teleportation

process is performed through noisy channels. In section IV we compute the π-tangles for the

various noisy channels. It is shown that the π-tangles for all noise channels decrease with

increasing the decoherence parameter κt. This is in fact expected due to the fact that the

decoherence in general disentangles quantum states like “sudden death”. The π-tangle for

the X- and Z-noise channels vanish at the limit κt → ∞. However, the π-tangles for the Y-

and isotropy-noise channels are found to be non-zero at the finite range of the decoherence

parameter κt. In section V we compute the three-tangles for the X- and Z-noise channels. It

is shown that the three-tangle for the Z-noise channel is exactly the same as the corresponding

π-tangle. The three-tangle for the X-noise channel is shown to have three different expressions

depending on the range of κt. Since the channels for the Y- and isotropy-noises are rank-8

mixed states, there is no general method to compute the three-tangles in these cases so far.

However, we will derive the upper bound of these three-tangles. In section VI we analyze the

π-tangle and three-tangle by making use of the fidelity between sender’s unknown state and

receiver’s final state. The π-tangle seems to be too large to have a nice physical interpretation.

The three-tangle also seems to be too small. This analysis strongly suggests that we may need

a different tripartite entanglement measure whose value is between three-tangle and π-tangle.

2. Basic Quantities

In this section we want to re-formulate the tripartite teleportation scheme in terms of

the density matrices[32]. It involves sender (Alice), accomplice (Bob) and receiver (Charlie).

Initially, they share each single qubit of the GHZ state, i.e. ρGHZ = |GHZ〉234〈GHZ|. The

purpose of the tripartite teleportation is as follows. Firstly, Alice at location 2 wants to

transport a single qubit state

ρin = |ψin〉〈ψin| |ψin〉 = cos

(

θ

2

)

eiφ/2|0〉 + sin

(

θ

2

)

e−iφ/2|1〉 (15)

to the receiver, Charlie, at location 4 with fidelity F̄C as high as possible with a help of

the accomplice, Bob, at location 3. At the same time Alice wants to transport ρin to the

accomplice, Bob, with fidelity F̄B as high as possible. Of course, one cannot make F̄B = F̄C =

1 due to no-cloning/broadcast theorems[33, 34]. The task is accomplished if one can make

F̄B and F̄C as high as possible. In this sense the tripartite teleportation scheme is similar to

a quantum copier (cloning device)[35, 36, 37, 38].

From the postulate of quantum mechanics on composite systems the state of the tripartite

teleportation process should be

ρin ⊗ ρGHZ . (16)

As will be discussed below ρGHZ will be changed into ε(ρGHZ) if noise is introduced when

Alice, Bob and Charlie prepare the GHZ state initially, where ε is a quantum operation[1].

After sharing GHZ state, Alice performs a projective measurement by preparing a set of

the measurement operators {M1,M2,M3,M4} with

M1 = |Φ+〉〈Φ+| M2 = |Φ−〉〈Φ−| M3 = |Ψ+〉〈Ψ+| M4 = |Ψ−〉〈Ψ−|, (17)

where

|Φ±〉 =
1√
2

(|00〉 ± |11〉)12 |Ψ±〉 =
1√
2

(|01〉 ± |10〉)12 . (18)
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Since |Φ±〉 and |Ψ±〉 form a Bell basis, the operators satisfy the completeness constraint

∑

m

M †
mMm = I. (19)

From the quantum mechanical postulates the probability Pm, probability that the result of

the Alice’s measurement is m, is given by

Pm = Tr
[(

M †
mMm ⊗ I34

)

(ρin ⊗ ρGHZ)
]

(20)

and the state of the system after the Alice’s measurement reduces to

ρ̃m =
1

Pm
(Mm ⊗ I34) (ρin ⊗ ρGHZ) (Mm ⊗ I34)

†. (21)

For our case we have P1 = P2 = P3 = P4 = 1/4. After measurement, Alice broadcasts her

measurement outcome to Bob and Charlie via a classical channel.

Next, let us consider the subsystem of Bob and Charlie. This process can be performed

by tracing out the Alice’s subsystem, i.e

πm
3,4 = Tr1,2 (ρ̃m) . (22)

Let us assume that the accomplice, Bob, performs a projective measurement again by prepar-

ing a set of measurement operators {N1, N2} with

N1 = |µ+〉〈µ+| N2 = |µ−〉〈µ−|, (23)

where

|µ+〉 = sin ν|0〉 + cos ν|1〉 |µ−〉 = cos ν|0〉 − sin ν|1〉. (24)

Since |µ+〉 and |µ−〉 form a basis for the Bob’s qubit, the completeness condition

N †
1N1 +N †

2N2 = I (25)

is naturally satisfied. From the quantum mechanical postulates again the probability qmn,

probability that the result of the Bob’s measurement is n on condition that the outcome of

Alice’s measurement is m, reduces to

qmn = Tr
[

(Nn ⊗ I4)π
m
3,4

]

(26)

and the state of the system after the Bob’s measurement becomes

π̃mn =
1

qmn
(Nn ⊗ I4)π

m
3,4(Nn ⊗ I4)

†. (27)

For our case qmn becomes

q11 = q21 = q32 = q42 =
1

2
(1 − cos 2ν cos θ) q12 = q22 = q31 = q41 =

1

2
(1 + cos 2ν cos θ) .

(28)

Now, let us consider the subsystem of Charlie by tracing out the Bob’s subsystem, i.e.

χmn
4 = Tr3 (π̃mn) . (29)
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Finally, Charlie takes an appropriate unitary transformation to his own qubit

τmn = umn
4 χmn

4 (umn
4 )

†
. (30)

The unitary operator umn
4 becomes

u11
4 = u22

4 = I u12
4 = u21

4 = σz u31
4 = u42

4 = σx u32
4 = u41

4 = σy (31)

where σi is usual Pauli matrices. At this stage the tripartite teleportation process is termi-

nated.

Now, we want to discuss the tripartite teleportation process through a noisy channel. If

noise is introduced at the initial stage when Alice, Bob, and Charlie share their single qubit

from |GHZ〉, ρGHZ is, in general, changed into the mixed state. The mixed state can be

derived by solving a master equation in the Lindblad form[39]

∂ρ

∂t
= −i[HS, ρ] +

∑

i,α

(

Li,αρL
†
i,α − 1

2

{

L†
i,αLi,α, ρ

}

)

(32)

where the Lindblad operator Li,α ≡ √
κi,ασ

(i)
α acts on the ith qubit and describes decoherence.

Of course, the operator σ
(i)
α denotes the Pauli matrix of the ith qubit with α = x, y, z. The

constant κi,α is approximately equal to the inverse of decoherence time. In this paper we will

assume for simplicity that the constant κi,α is independent of i and α, i.e. κi,α = κ.

Solutions of Eq.(32) for the (L2,x, L3,x, L4,x), (L2,y, L3,y, L4,y), (L2,z, L3,z, L4,z) and isotro-

py noises were solved explicitly in Ref.[40]. The spectral decompositions of the results are as

follows:

εX(ρGHZ) = x|GHZ, 1〉〈GHZ, 1| + 1 − x

3

[

|GHZ, 3〉〈GHZ, 3| (33)

+|GHZ, 5〉〈GHZ, 5|+ |GHZ, 7〉〈GHZ, 7|
] (

x =
1

4
(1 + 3e−4κt)

)

εY (ρGHZ) =
y3
+

8
|GHZ, 1〉〈GHZ, 1| + y3

−

8
|GHZ, 2〉〈GHZ, 2|

+
y+y

2
−

8

[

|GHZ, 3〉〈GHZ, 3| + |GHZ, 5〉〈GHZ, 5| + |GHZ, 7〉〈GHZ, 7|
]

+
y2
+y−

8

[

|GHZ, 4〉〈GHZ, 4| + |GHZ, 6〉〈GHZ, 6| + |GHZ, 8〉〈GHZ, 8|
]

(y± = 1 ± e−2κt)

εZ(ρGHZ) = z|GHZ, 1〉〈GHZ, 1|+ (1 − z)|GHZ, 2〉〈GHZ, 2|
(

z =
1

2
(1 + e−6κt)

)

εI(ρGHZ) =
1 + 3p2 + 4p3

8
|GHZ, 1〉〈GHZ, 1| + 1 + 3p2 − 4p3

8
|GHZ, 2〉〈GHZ, 2|

+
1 − p2

8

[

I − (|000〉〈000|+ |111〉〈111|)
]

(p = e−4κt)

where the subscripts X , Y , Z, and I represent the type of noise channels, and

|GHZ, 1〉 =
1√
2

(|000〉+ |111〉) |GHZ, 2〉 =
1√
2

(|000〉 − |111〉) (34)
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|GHZ, 3〉 =
1√
2

(|001〉+ |110〉) |GHZ, 4〉 =
1√
2

(|001〉 − |110〉)

|GHZ, 5〉 =
1√
2

(|010〉+ |101〉) |GHZ, 6〉 =
1√
2

(|010〉 − |101〉)

|GHZ, 7〉 =
1√
2

(|011〉+ |100〉) |GHZ, 8〉 =
1√
2

(|011〉 − |100〉) .

The probabilities Pm’s and qmn’s in the noisy channels can be directly computed by

changing ρGHZ in Eq.(20) and Eq.(26) into the mixed states (33). The results for the

(L2,x, L3,x, L4,x), (L2,y, L3,y, L4,y), (L2,z, L3,z, L4,z)
b, and isotropy noise channels are sum-

marized in Table 1. As Table 1 indicates, Pm’s and qmn’s in the various noisy channels reduce

to Pi = 1/4(i = 1, · · · , 4) and Eq.(28) at κ = 0 limit.

Table 1. Basic Quantities in Tripartite Teleportation

quantities no noise and Z noise X and Y noises Isotropy noise

P1, P2, P3, P4
1

4

1

4

1

4

q11, q21, q32, q42
1

2
(1 − cos 2ν cos θ) 1

2
(1 − cos 2ν cos θe−4κt) 1

2
(1 − cos 2ν cos θe−8κt)

q31, q41, q12, q22
1

2
(1 + cos 2ν cos θ) 1

2
(1 + cos 2ν cos θe−4κt) 1

2
(1 + cos 2ν cos θe−8κt)

3. Fidelities

The fidelity, which measures how well the initial state ρin is transported to Charlie’s final

state, can be computed as follows. Since Charlie’s final state is τmn provided that Alice and

Bob measure m and n respectively, one can define the fidelity FC
mn in this case as a form

FC
mn = Tr [τmnρin] . (35)

Averaging over all possible measurement outcomes, we can define the average fidelity with

fixed ρin in a form

FC(θ, φ) =

4
∑

m=1

2
∑

n=1

PmqmnF
C
mn. (36)

Finally, averaging FC(θ, φ) over all possible input states, we can define the average fidelity

F̄C for all possible ρin as follows:

F̄C =
1

4π

∫ π

0

dθ

∫ 2π

0

dφ sin θFC(θ, φ). (37)

When there is no noise, FC(θ, φ) and F̄C becomes

FC(θ, φ) = 1 − 1

2
(1 − sin 2ν) sin2 θ F̄C =

1

3
(2 + sin 2ν). (38)

Thus, the fidelities between Alice and Charlie depend on the set of Bob’s measurement oper-

ators. If Bob chooses ν = π/4, F̄C reaches to its maximum F̄C = 1, which means the perfect

teleportation from Alice to Charlie.

bFor notational simplicity, we will use the terminology X-, Y-, and Z-noises together for (L2,x, L3,x, L4,x),
(L2,y , L3,y , L4,y), (L2,z , L3,z , L4,z) noises
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The fidelities FC(θ, φ) and F̄C are summarized in Table 2 when the mixed states changed

from |GHZ〉 by various noises are introduced as a quantum channel. Comparing Table 2

with Table I of Ref.[40], one can realize that FC(θ, φ) and F̄C with ν = π/4 exactly coincide

with fidelities of the bipartite teleportation when same noises are introduced initially in the

quantum channel.

Table 2. Fidelities between ρin and Charlie’s final state τmn

Type of noise FC(θ, φ) F̄C

no noise 1 − 1

2
(1 − sin 2ν) sin2 θ 1

3
(2 + sin 2ν)

X noise 1

2
[(1 + sin2 θ cos2 φ sin 2ν) 1

6
[(3 + sin 2ν)

+e−4κt(cos2 θ + sin2 θ sin2 φ sin 2ν)] +e−4κt(1 + sin 2ν)]

Y noise 1

2
[1 + e−2κt sin2 θ sin2 φ sin 2ν + e−4κt cos2 θ 1

6
[3 + e−2κt sin 2ν

+e−6κt sin2 θ cos2 φ sin 2ν] +e−4κt + e−6κt sin 2ν]

Z noise 1 − 1

2
(1 − sin 2νe−6κt) sin2 θ 1

3
[2 + e−6κt sin 2ν]

Isotropy noise 1

2
[1 + e−8κt cos2 θ + e−12κt sin2 θ sin 2ν] 1

6
[3 + e−8κt + 2 sin 2νe−12κt]

In the tripartite teleportation scheme, however, there are additional fidelities between

Alice’s state ρin and Bob’s final state. Since Bob’s final state after his measurement is N1

or N2 defined in Eq.(23) with respective probability
∑4

i=1 Piqi1 or
∑4

i=1 Piqi2, the average

fidelities between ρin and Bob’s final state can be defined as

FT
B (θ, φ) = Tr[N1ρin]

4
∑

i=1

Piqi1 + Tr[N2ρin]

4
∑

i=1

Piqi2 (39)

F̄T
B =

1

4π

∫ π

0

dθ

∫ 2π

0

dφ sin θFT
B (θ, φ).

If one computes FT
B (θ, φ) and F̄T

B for X-, Y-, Z-, and isotropy-noise channels, one can show

that they are all same as

FT
B (θ, φ) = F̄T

B =
1

2
. (40)

This is too small because the optimal value for a classical teleportation scheme is 2/3.

However, one can define fidelities at the stage just after Alice broadcasts her measurement

outcome to Bob and Charlie via classical channel. If Alice’s outcome is m, then the fidelities

between ρin and Bob’s final state can be defined as

Fm
B (θ, φ) = qm1Tr[N1ρin] + qm2Tr[N2ρin] (41)

F̄m
B =

1

4π

∫ π

0

dθ

∫ 2π

0

dφ sin θFm
B (θ, φ).

When there is no noise, it is straightforward to show that Fm
B (θ, φ) and F̄m

B become

Fm=1
B (θ, φ) = Fm=2

B (θ, φ) =
1

2

[

1 + cos2 2ν cos2 θ − sin 2ν cos 2ν sin θ cos θ cosφ
]

(42)

Fm=3
B (θ, φ) = Fm=4

B (θ, φ) =
1

2

[

1 − cos2 2ν cos2 θ + sin 2ν cos 2ν sin θ cos θ cosφ
]

F̄m=1
B = F̄m=2

B =
2

3
− 1

6
sin2 2ν

F̄m=3
B = F̄m=4

B =
1

3
+

1

6
sin2 2ν.
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When m = 1 or 2, F̄m
B reaches to its maximum value 2/3 if ν = 0 and ν = π/2. At the same

time fidelity F̄C becomes its minimum value 2/3. When F̄m
B reaches to its minimum value

1/2 at ν = π/4, F̄C becomes its maximum value 1. Thus, one can increase/decrease F̄m
B at

the cost of decreasing/increasing F̄C .

Table 3. Fidelities between ρin and Bob’s state just after Alice broadcasts her outcome.

Type of noise Alice’s outcome F m
B

(θ, φ) F̄ m
B

X-noise m = 1, 2 1

2
+ 1

2
cos 2ν cos 2θ 1

6

(

3 + e−4κt cos2 2ν
)

and × (cos 2ν cos θ − sin 2ν sin θ) e−4κt

Y-noise m = 3, 4 1

2
− 1

2
cos 2ν cos 2θ 1

6

(

3 − e−4κt cos2 2ν
)

× (cos 2ν cos θ − sin 2ν sin θ) e−4κt

no-noise m = 1, 2 1

2

(

1 + cos2 2ν cos2 θ 2

3
− 1

6
sin2 2ν

and − sin 2ν cos 2ν sin θ cos θ cos φ

)

Z-noise m = 3, 4 1

2

(

1 − cos2 2ν cos2 θ 1

3
+ 1

6
sin2 2ν

+sin 2ν cos 2ν sin θ cos θ cos φ

)

m = 1, 2 1

2
+ 1

2
cos 2ν cos 2θ 1

6

(

3 + e−8κt cos2 2ν
)

Isotropy × (cos 2ν cos θ − sin 2ν sin θ) e−8κt

noise m = 3, 4 1

2
− 1

2
cos 2ν cos 2θ 1

6

(

3 − e−8κt cos2 2ν
)

× (cos 2ν cos θ − sin 2ν sin θ) e−8κt

The fidelities Fm
B (θ, φ) and F̄m

B are summarized in Table 3 when the various noisy channels

are introduced. One of the interesting points of Table 3 is that the fidelities for the Z-noisy

channel are independent of the noise parameter κ while FC(θ, φ) and F̄C are dependent on κ

as Table II indicated. The ν- and κt-dependence of F̄C and F̄m
B (m = 1, 2) in (L2,z, L3,z, L4,z)

noisy channel is plotted together in Fig. 1. The upper surface in the figure corresponds to

F̄C and the lower one to F̄m
B . The difference between F̄C and F̄m

B is averagely maximized

when κ = 0, which means there is no noise. If, however, κt becomes larger and larger, the

difference between two fidelities becomes negligible. This is due to the fact that the effect

of noise is significant compared to the choice of ν in the Bob’s measurement. One can find

a similar behaviors in the other noisy channels although we have not presented the ν- and

κt-dependence of the fidelities explicitly in this paper.

4. π-tangle

In this section we will compute the π-tangle of the various noisy channels defined in

Eq.(12). When there is no noise, it is easy to show that

||ρTA

GHZ || = ||ρTB

GHZ || = ||ρTC

GHZ || = 2, (43)

which results in

NA(BC) = NB(AC) = NC(AB) = 1. (44)

In addition, one can show that there is no contribution to the entanglement from the two-
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Fig. 1. The ν- and κt-dependence of F̄C and F̄ m
B

with m = 1, 2 when the type of noise is
(L2,z , L3,z , L4,z). The upper and lower surfaces correspond to F̄C and F̄ m

B
respectively. The

difference between F̄C and F̄ m
B

is maximized in the κt → 0 limit. However, this difference becomes
negligible with increasing κt. This is due to the fact that decoherence is a major dominant effect
in the region of large κt.

tangles in GHZ state:

NAB = NAC = NBC = 0. (45)

Thus, π-tangle for the GHZ state is simply

πGHZ
ABC = 1, (46)

which indicates that the GHZ state is a maximally entangled state.

The π-tangles for (L2,x, L3,x, L4,x), (L2,y, L3,y, L4,y), (L2,z, L3,z, L4,z), and isotropy chan-

nels can be computed straightforwardly. For all noisy channels NA(BC) = NB(AC) = NC(AB)

and NAB = NAC = NBC = 0 hold. This seems to be due to the fact that we have considered

only same-axis noisy channels. The π-tangles for the various noisy channels are summarized

at Table 4. The interesting fact Table 4 indicates is that while the π-tangles for the X- and

Z-noise channels vanish at κt → ∞ limit, those for the Y- and isotropy-noise channels goes

to zero when y∗ ≤ κt ≤ ∞ and i∗ ≤ κt ≤ ∞ respectively, where

y∗ = ln
1 + (19 + 3

√
33)1/3 + (19 − 3

√
33)1/3

3
∼ 0.609378 (47)

i∗ =
1

4
ln

(54 + 3
√

321)1/3 + (54 − 3
√

321)1/3

3
∼ 0.146435.
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Table 4. The π-tangles for the various noisy channels.

Type of noise π-tangle

no noise 1
X noise e−8κt

Y noise 1

64

[

|1 − 3e−2κt − e−4κt − e−6κt|

−(1 − 3e−2κt − e−4κt − e−6κt)

]2

Z noise e−12κt

Isotropy 1

64

[

|1 − e−8κt − 4e−12κt|

noise −(1 − e−8κt − 4e−12κt)

]2
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Fig. 2. The κt dependence of π-tangles and average fidelities F̄C in (L2,x, L3,x, L4,x) (Fig. 2a),
(L2,y , L3,y , L4,y) (Fig. 2b), (L2,z , L3,z , L4,z) (Fig. 2c), and isotropy (Fig. 2d) noisy channels.

The κt-dependence of π-tangles together with average fidelity F̄C for the various noisy

channels are plotted in Fig. 2. In the Z-noisy channel the π-tangle vanishes at κt = ∞ and
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at this limit F̄C goes to 2/3 regardless of ν, which is a classical fidelity limit. In the X-noise

channel F̄C goes to (3+sin 2ν)/6 at κt = ∞. When ν = π/4, this also goes to 2/3. Therefore,

the π-tangles for X- and Z-noise channels seem to show a nice connection between F̄C and

tripartite entanglement of the given channel.

However, this nice property is not maintained in the Y- and isotropy-noise channel. In the

Y-noise channel the π-tangle vanishes at y∗ ≤ κt. At κt = y∗ F̄C reduces to 0.166667(3.08738+

0.321426 sin2ν), whose maximum is fY = 0.568314. Thus fY is much less than the classical

fidelity limit 2/3. Similar behavior can be found in the isotropy channel. In this channel the

π-tangle vanishes at i∗ ≤ κt. At κt = i∗ the maximum of fidelity F̄C becomes fI = 0.609159,

which is also less than the classical limit 2/3.

5. three-tangle

In this section we would like to discuss the three-tangles for the various noisy channels

expressed in Eq.(33).

5.1. (L2,z, L3,z, L4,z) noisy channel

Let us consider the pure state

|Z(z, ϕ)〉 =
√
z|GHZ, 1〉 − eiϕ

√
1 − z|GHZ, 2〉 (48)

where z = (1 + e−6κt)/2. It is easy to show that the three-tangle of |Z(z, ϕ)〉 is

τ3 (|Z(z, ϕ)〉) = (1 − 2z + 2z2) − 2z(1 − z) cos 2ϕ. (49)

Thus, τ3 (|Z(z, ϕ)〉) has a minimum at ϕ = 0 and ϕ = π, i.e.

τ3 (|Z(z, 0)〉) = τ3 (|Z(z, π)〉) = (1 − 2z)2. (50)

In terms of the terminologies of Ref.[41] (1 − 2z)2 forms a convex characteristic curve in

(z, τ3 (|Z(z, ϕ)〉)) plane. In addition, one can show straightforwardly that ε(ρGHZ) defined in

Eq.(33) can be decomposed into

ε(ρGHZ) =
1

2
|Z(z, 0)〉〈Z(z, 0)|+ 1

2
|Z(z, π)〉〈Z(z, π)|. (51)

If Eq.(51) is optimal, then the three-tangle for ε(ρGHZ) is (2z − 1)2. Since this coincides

with the convex characteristic curve, Eq.(51) should be the optimal decomposition. Thus, the

three-tangle for the ε(ρGHZ) is

τz
ABC = (1 − 2z)2 = e−12κt. (52)

It is interesting to note that the three-tangle and π-tangle are the same with each other in

this channel.

5.2. (L2,x, L3,x, L4,x) noisy channel

Before we start computation, it is worthwhile noting that as shown in Ref.[23] the state

ΠGHZ =
1

3

[

|GHZ, 3〉〈GHZ, 3| + |GHZ, 5〉〈GHZ, 5| + |GHZ, 7〉〈GHZ, 7|
]

(53)
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has vanishing three-tangle. This fact is shown in appendix A.

Now, let us consider a pure state

|X(x, ϕ1, ϕ2, ϕ3)〉 =
√
x|GHZ, 1〉 − eiϕ1

√

1 − x

3
|GHZ, 3〉 (54)

−eiϕ2

√

1 − x

3
|GHZ, 5〉 − eiϕ3

√

1 − x

3
|GHZ, 7〉

where x = (1 + 3e−4κt)/4. Then it is easy to show that the three-tangle of |X(x, ϕ1, ϕ2, ϕ3)〉
becomes

τ3 (|X(x, ϕ1, ϕ2, ϕ3)〉) (55)

=

∣

∣

∣

∣

∣

x2 +
(1 − x)2

9

(

e4iϕ1 + e4iϕ2 + e4iϕ3

)

− 2

3
x(1 − x)

(

e2iϕ1 + e2iϕ2 + e2iϕ3

)

−2

9
(1 − x)2

(

e2i(ϕ1+ϕ2) + e2i(ϕ1+ϕ3) + e2i(ϕ2+ϕ3)
)

− 8
√

3

9

√

x(1 − x)3ei(ϕ1+ϕ2+ϕ3)

∣

∣

∣

∣

∣

.

The vectors |X(x, ϕ1, ϕ2, ϕ3)〉 has following properties. The three-tangle of it has the

largest zero at x = x0 ≡ 3/4 and ϕ1 = ϕ2 = ϕ3 = 0. The vectors |X(x, 0, 0, 0)〉, |X(x, 0, π, π)〉,
|X(x, π, 0, π)〉 and |X(x, π, π, 0)〉 have same three-tangles. Finally, εX(ρGHZ) can be decom-

posed into

εX(ρGHZ) =
1

4

[

|X(x, 0, 0, 0)〉〈X(x, 0, 0, 0)|+ |X(x, 0, π, π)〉〈X(x, 0, π, π)| (56)

+|X(x, π, 0, π)〉〈X(x, π, 0, π)| + |X(x, π, π, 0)〉〈X(x, π, π, 0)|
]

.

When x ≤ x0, one can construct the optimal decomposition in the following form:

εX(ρGHZ) =
x

4x0

[

|X(x0, 0, 0, 0)〉〈X(x0, 0, 0, 0)|+ |X(x0, 0, π, π)〉〈X(x0, 0, π, π)| (57)

+|X(x0, π, 0, π)〉〈X(x0, π, 0, π)| + |X(x0, π, π, 0)〉〈X(x0, π, π, 0)|
]

+
x0 − x

x0
ΠGHZ .

Since ΠGHZ has vanishing three-tangle, one can show easily

τX
ABC = 0 when x ≤ x0 = 3/4. (58)

Now, let us consider the three-tangle of εX(ρGHZ ) in the region x0 ≤ x ≤ 1. Since

Eq.(56) is an optimal decomposition at x = x0, one can conjecture that it is also optimal in

the region x0 ≤ x. As will be shown shortly, however, this is not true at the large-x region.

If we compute the three-tangle under the condition that Eq.(56) is optimal at x0 ≤ x, its

expression becomes

αX
I (x) = x2 − 1

3
(1 − x)2 − 2x(1 − x) − 8

√
3

9

√

x(1 − x)3. (59)
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However, one can show straightforwardly that αX
I (x) is not a convex function in the region

x ≥ x∗, where

x∗ =
1

4

(

1 + 21/3 + 41/3
)

≈ 0.961831. (60)

Therefore, we need to convexify αX
I (x) in the region x1 ≤ x ≤ 1 to make the three-tangle

to be convex function, where x1 is some number between x0 and x∗. The number x1 will be

determined shortly.

In the large x-region one can derive the optimal decomposition in a form:

εX(ρGHZ) (61)

=
1 − x

4(1 − x1)

[

|X(x1, 0, 0, 0)〉〈X(x1, 0, 0, 0)|+ |X(x1, 0, π, π)〉〈X(x1, 0, π, π)|

+|X(x1, π, 0, π)〉〈X(x1, π, 0, π)| + |X(x1, π, π, 0)〉〈X(x1, π, π, 0)|
]

+
x− x1

1 − x1
|GHZ, 1〉〈GHZ, 1|

which gives a three-tangle as

αX
II(x, x1) =

1 − x

1 − x1
αX

I (x1) +
x− x1

1 − x1
. (62)

Since d2αX
II/dx

2 = 0, there is no convex problem if αX
II(x, x1) is a three-tangle in the

large-x region. The constant x1 can be fixed from the condition of minimum αX
II , i.e.

∂αX
II(x, x1)/∂x1 = 0, which gives

x1 =
1

4
(2 +

√
3) ≈ 0.933013. (63)

As expected x1 is between x0 and x∗. Thus, finally the three-tangle for εX(ρGHZ) becomes

τX
ABC =







0 x ≤ x0

αX
I (x) x0 ≤ x ≤ x1

αX
II(x, x1) x1 ≤ x ≤ 1

(64)

and the corresponding optimal decompositions are Eq.(57), Eq.(56) and Eq.(61) respectively.

In terms of κt τX
ABC reduces to

τX
ABC =







αX
II(x, x1) 0 ≤ κt ≤ µX

1

αX
I (x) µX

1 ≤ κt ≤ µX
2

0 µX
2 ≤ κt ≤ ∞

(65)

where x = (1 + 3e−4κt)/3 and

µX
1 = −1

4
ln

4x1 − 1

3
≈ 0.0233899 µX

2 = −1

4
ln

2

3
≈ 0.101366. (66)

5.3. (L2,y, L3,y, L4,y) noisy channel
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The mixed state εY (ρGHZ) given in Eq.(33) can be re-written as

εY (ρGHZ) = ξΠGHZ
1 (Y1) + (1 − ξ)ΠGHZ

2 (Y2) (67)

where

ΠGHZ
1 (Y1) = Y1|GHZ, 1〉〈GHZ, 1| (68)

+
1 − Y1

3

[

|GHZ, 3〉〈GHZ, 3| + |GHZ, 5〉〈GHZ, 5| + |GHZ, 7〉〈GHZ, 7|
]

ΠGHZ
2 (Y2) = Y2|GHZ, 2〉〈GHZ, 2|

+
1 − Y2

3

[

|GHZ, 4〉〈GHZ, 4| + |GHZ, 6〉〈GHZ, 6| + |GHZ, 8〉〈GHZ, 8|
]

.

In Eq.(68) the constants are given by

ξ =
y+(y2

+ + 3y2
−)

8
Y1 =

y2
+

y2
+ + 3y2

−

Y2 =
y2
−

3y2
+ + y2

−

(69)

where y± = 1±e−2κt. It is worthwhile noting that ΠGHZ
2 (Y2) is local-unitary (LU) equivalent

to ΠGHZ
1 (Y2), i.e.

ΠGHZ
1 (Y2) = (σz ⊗ I ⊗ I)ΠGHZ

2 (Y2)(σz ⊗ I ⊗ I)†.

Since the three-tangle is LU-invariant quantity, the three-tangle for ΠGHZ
2 (Y2) should be

equal to that for ΠGHZ
1 (Y2). From a fact that ΠGHZ

1 (Y2) can be obtained from εX(ρGHZ)

by replacing x by Y2, one can compute the three-tangle for ΠGHZ
2 (Y2) directly from Eq.(64).

Since, furthermore, Y2 ≤ 1/4 in the entire range of κt, the three-tangle for ΠGHZ
2 (Y2) should

be zero.

The state εY (ρGHZ) is rank-8 mixed state and it seems to be highly difficult to compute

the three-tangle analytically. So far, in fact, there is no general method for the computa-

tion of the three-tangle for the rank-8 mixed states. However, one can compute its upper

bound as following. Since the three-tangle for ΠGHZ
2 (Y2) is zero and the three-tangle for the

mixed state is obtained by the convex-roof method, Eq.(67) implies that the three-tangle for

εY (ρGHZ) should be less than ξ times three-tangle for ΠGHZ
1 (Y1). Since ΠGHZ

1 (Y1) is same

with εX(ρGHZ) if x is replaced by Y1, one can compute the upper bound of the three-tangle

for εY (ρGHZ), τY :UB
ABC directly from Eq.(64). The superscript UB stands for upper bound.

The final result of this upper bound can be summarized as

τY :UB
ABC =







ξαX
II(Y1, x1) 0 ≤ κt ≤ ν∗1
ξαX

I (Y1) ν∗1 ≤ κt ≤ ν∗2
0 ν∗2 ≤ κt ≤ ∞

(70)

where

ν∗1 = −1

2
ln(

√
3 − 1) ∼ 0.155953 ν∗2 =

1

2
ln 2 ∼ 0.346574. (71)

Of course, x1 is given in Eq.(63).

Although we have derived the non-trivial upper bound of three-tangle for εY (ρGHZ), it

is worthwhile noting that Eq.(70) does not have any information on the real three-tangle for
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the rank-8 mixed state εY (ρGHZ) because it is derived from a particular decomposition (67).

The only one we know is that Eq.(70) is larger than the real three-tangle derived from the

optimal decomposition.

5.4. isotropy noisy channel

The mixed state εI(ρGHZ) given in Eq.(33) can be re-written as

εI(ρGHZ) = ζΣGHZ
1 + (1 − ζ)ΣGHZ

2 (72)

where

ΣGHZ
1 =

(

1

2
+

2p3

1 + 3p2

)

|GHZ, 1〉〈GHZ, 1| (73)

+

(

1

2
− 2p3

1 + 3p2

)

|GHZ, 2〉〈GHZ, 2|

ΣGHZ
2 =

1

6
{I − (|000〉〈000|+ |111〉〈111|)}

and

ζ =
1 + 3p2

4
(74)

with p = e−4κt.

The state εI(ρGHZ) is rank-8 mixed state and we do not know how to compute the three-

tangle of it exactly. Since, however, the three-tangle of ΣGHZ
2 is zero, one can compute at

least the upper bound as ζ times three-tangle of ΣGHZ
1 . This upper bound can be easily

computed by making use of the analytical result of the three-tangle for the Z-noise channel.

The final result of this upper bound is

τI:UB
ABC =

4p6

1 + 3p2
=

4e−24κt

1 + 3e−8κt
(75)

where the superscript UB stands for the upper bound. As stressed before, Eq.(75) does not

have any relation to the real three-tangle of εI(ρGHZ). It is merely a quantity which is larger

than the real three-tangle of the rank-8 mixed state εI(ρGHZ).

6. Conclusion

In this paper we have computed the π-tangles explicitly for the mixed states summarized

in Eq.(33). It is shown that the π-tangles for the X- and Z-noisy channels vanish at κt→ ∞,

where the maximum of F̄C reduces to the classical limit 2/3. However, this nice property is

not maintained for the Y- and isotropy-noise channels. For Y-noise the π-tangle vanishes at

y∗ ≤ κt, where y∗ is given by Eq.(47). At κt = y∗ the maximum F̄C becomes 0.57, which is

much less than the classical limit. For isotropy noise the π-tangle vanishes when i∗ ≤ κt. At

κt = i∗ the maximum F̄C becomes 0.61, which is also less than the classical limit. Although

the π-tangle was constructed in Ref.[24] to reflect the tripartite entanglement of the W-type

states, it does not seem to give a meaningful interpretation in real quantum information

processes.
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Fig. 3. The κt dependence of the three-tangle and π-tangle for the (L2,x, L3,x, L4,x) (Fig. 3a),
(L2,y , L3,y , L4,y) (Fig. 3b), and isotropy (Fig. 3c) noisy channels.

We have also computed the three-tangles for the X- and Z-noise channels. The remarkable

fact is that the three-tangle for the Z-noise channel is exactly the same with the corresponding

π-tangle. Therefore, the three-tangle for the Z-noise channel vanishes at κt → ∞, where

all F̄C reduce to the classical limit regardless of Bob’s measurement outcome. For X-noise

the κt-dependence of the three tangle is plotted in Fig. 3(a). For comparison we plot the

corresponding π-tangle together. As Fig. 3(a) shows, the three-tangle is much less than the

corresponding π-tangle. In this channel the three-tangle vanishes when µX
2 ≤ κt, where µX

2 =

−(1/4) ln(2/3). At κt = µX
2 the fidelity F̄C becomes (11+ 5 sin 2ν)/18. When, therefore, ν =

(1/2) sin−1(1/5) ∼ 0.100679, F̄C reduces to the classical limit 2/3. However, the maximum

fidelity goes to 8/9, which is much larger than that of the classical limit.

The κt-dependence of τY :UB
ABC and τI:UB

ABC are plotted in Fig. 3(b) and Fig. 3(c) respectively.

For comparison we plot the corresponding π-tangle together. Fig. 3(b) shows that τY :UB
ABC is

larger than the corresponding π-tangle when 0 ≤ κt ≤ 0.315. Fig. 3(c) shows that τI:UB
ABC

is larger than the corresponding π-tangle in the entire range of κt. This is due to the fact

that τY :UB
ABC and τI:UB

ABC are merely the upper bounds of the real three-tangles for the Y- and
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isotropy-noise channels. If the calculational tool for the three-tangle of arbitrary three-party

mixed states are developed someday, probably the real three-tangles computed via this tool

are less than the corresponding π-tangles.

In this paper we have examined the physical meaning of the three-tangle and π-tangle in

the real quantum information process. We adopted the tripartite teleportation via various

noisy channels as a model of quantum process. It is shown that the π-tangle seems to be too

large to have a meaningful interpretation. Although we cannot compute the three-tangles

for the Y- and isotropy-noise channels due to their high rank, the results for X- and Z-noise

seems to imply the fact that the three-tangle is too small to have meaningful interpretation.

Probably, we need a different tripartite entanglement measure whose value is between three-

tangle and π-tangle.
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Appendix A

In this appendix we would like to prove that ΠGHZ defined in Eq.(53) has vanishing

three-tangle. Consider a pure state

|J(θ1, θ2)〉 =
1√
3
|GHZ, 3〉 − 1√

3
eiθ1 |GHZ, 5〉 − 1√

3
eiθ2 |GHZ, 7〉. (A.1)

Then, it is easy to show that the three-tangle of |J(θ1, θ2)〉 is

τ3(θ1, θ2) =
1

9
|1 −

(

eiθ1 − eiθ2

)2 ||1 −
(

eiθ1 + eiθ2

)2 |, (A.2)

which vanishes when

(i) eiθ1 − eiθ2 = 1 =⇒ (θ1 = π/3, θ2 = 2π/3), (θ1 = 5π/3, θ2 = 4π/3) (A.3)

(ii) eiθ1 − eiθ2 = −1 =⇒ (θ1 = 2π/3, θ2 = π/3), (θ1 = 4π/3, θ2 = 5π/3)

(iii) eiθ1 + eiθ2 = 1 =⇒ (θ1 = π/3, θ2 = 5π/3), (θ1 = 5π/3, θ2 = π/3)

(iv) eiθ1 + eiθ2 = −1 =⇒ (θ1 = 2π/3, θ2 = 4π/3), (θ1 = 4π/3, θ2 = 2π/3).

Furthermore, one can show straightforwardly that ΠGHZ can be decomposed into

ΠGHZ =
1

8

[

|J
(

π

3
,
2π

3

)

〉〈J
(

π

3
,
2π

3

)

| + |J
(

π

3
,
5π

3

)

〉〈J
(

π

3
,
5π

3

)

| (A.4)
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|
]

.

Combining Eq.(A.3) and (A.4), one can show that Eq.(A.4) is the optimal decomposition of

ΠGHZ and the three-tangle is

τ3 (ΠGHZ) = 0. (A.5)


